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The Theory of Ostwald Ripening 
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Developments in the theory of Ostwald ripening since the classic work of I. M. 
Lifshitz and V. V. Slyozov (LS) are reviewed and directions for future work are 
suggested. Recent theoretical work on the role of a finite volume fraction of 
coarsening phase on the ripening behavior of two-phase systems is reformulated 
in terms of a consistent set of notation through which each of the theories can 
be compared and contrasted. Although more theoretical work is necessary, these 
theories are in general agreement on the effects of a finite volume fraction of 
coarsening phase on the coarsening behavior of two-phase systems. New work 
on transient Ostwald ripening is presented which illustrates the broad range of 
behavior which is possible in this regime. The conditions responsible for the 
presence of the asymptotic state first discovered by LS, as well as the manner in 
which this state is approached, are also discussed. The role of elastic fields 
during Ostwald ripening in solid-solid mixtures is reviewed, and it is shown that 
these fields can play a dominant role in determining the coarsening behavior of 
a solid-solid system. 

KEY WORDS: Ostwald ripening; phase transformations; competitive growth; 
diffusion. 

1. INTRODUCTION 

In general ,  any  f i rs t -order  phase  t r a n s f o r m a t i o n  process  results  in a two-  

phase  mix tu re  c o m p o s e d  of  a d ispersed  second  phase  in a matr ix .  H o w e v e r ,  

as a resul t  o f  the large surface  a rea  present ,  the mix tu re  is not  ini t ia l ly  in 

t h e r m o d y n a m i c  equi l ibr ium.  The  to ta l  ene rgy  of  the two-phase  sys tem can  be 

decreased  via  an increase  in the size scale  o f  the second phase  and thus a 

decrease  in to ta l  in ter fac ia l  area.  Such a p rocess  is t e rmed  Ostwald ripening 
or  coarsening. Since  the excess  energy  assoc ia ted  with  the total  surface  area  

is usua l ly  small ,  such surface  energy  dr iven  m o r p h o l o g i c a l  changes  typ ica l ly  

mani fes t  themse lves  as the last  s tage o f  a f i rs t -order  phase  t r a n s f o r m a t i o n  
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process. However, there are clearly exceptions to such a generalization, such 
as the coarsening of secondary dendrite arms during the growth of a dendrite 
into an undercooled liquid and void growth in irradiated materials. The 
driving force for the ripening process is the well-known curvature dependence 
of the chemical potential which, assuming isotropic surface energy, is (1) 

r = / t  o + VmYK (1) 

where x is the mean interfacial curvature and go is the chemical potential of 
an atom at a flat interface, V m is the molar volume and ~ is the surface 
energy. From Eq. (1) it is clear that atoms will flow from regions of high to 
low curvature. This results in the disappearance of surfaces possessing high 
curvature and an increase in the size scale of dispersed second phase, which 
is consistent with the necessary decrease in total energy of the two-phase 
system. 

Surprisingly, the above qualitative explanation of the Ostwald ripening 
process seems to be all that existed for some 50 years following Ostwald's 
original discovery of the phenomena. (2'3) Early attempts by Greenwood ~4) 
and Asimov ~5) to construct a quantitative theory of the ripening process did 
not meet with success since both theories are based upon an unrealistic 
solution for the diffusion field in the matrix. 

A major advance in the theory of Ostwald ripening was made in a 
paper by Lifshitz and Slyozov ~6) and followed by a related paper by Wagner 
(LSW). (v) In contrast to previous theories, Lifshitz and Slyozov (LS) 
developed a method for treating an ensemble of coarsening particles, and 
were able to make quantitative predictions on the long-time behavior of coar- 
sening systems without recourse to a numerical solution of the relevant 
equations. The LS paper stimulated much interest soon after it was published 
and it has become the seminal paper to which all subsequent theoretical 
work on Ostwald ripening has been compared. There has also been a recent 
resurgence in interest in the coarsening problem. I hope to illustrate the 
fundamental importance of the LS paper by critically examining some of 
these recent developments and enumerating some of the still unanswered 
questions. 

In order to place the modern work in perspective, a brief review of the 
Lifshitz-Slyozov and related papers will be given. Following this, a review of 
recent work will be given which deals with: the effects of a finite volume 
fraction of coarsening phase on the ripening process, transient Ostwald 
ripening and the influence of elastic fields on the coarsening behavior of two- 
phase mixtures. Finally, directions for future research will be outlined. 

Dimensionless variables will be employed for the remainder of this 
paper. An appropriate characteristic length for a system which exchanges 
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mass during coarsening, through which all quantities of length will be scaled, 
is the capillary length l C defined as 

l~ = 2yVm/(Rg T) (2) 

where gg is the gas constant and T is temperature. A dimensionless time 
may also be defined as 

t = [Dc~ Vm/12c] t* (3) 

where t* is dimensional time, D is the diffusion coefficient, and coo is the 
solute concentration in the matrix at a flat interface. Finally a dimensionless 
concentration 0 will be defined as 

0 = (c - coo)/co~ (4) 

Other dimensionless lengths, times, and field variables can be defined for 
systems which exchange heat during coarsening [8]. 

2. CLASSIC THEORY OF COARSENING 

In this review of the LS approach, particular attention will be paid to 
the assumptions upon which the theory is based. A number of preliminary 
assumptions must be made before continuing: (1)the coarsening second 
phase is spherical with radiusR, (2) the particles are fixed in space, and (3) 
both the particles and the matrix are fluids. We shall now proceed to derive 
the three equations upon which the LS approach is based. 

The morphology of a dispersed spherical second phase will be charac- 
terized in terms of particle radius distribution, f ( R ,  t), where f is defined as 
the number of particles per unit volume at time t in a size class R to R + dR. 
Representing a particle radius distribution in terms of a continuous function 

f ( R ,  t) implies that there exists sufficient numbers of particles in the system 
for such a continuum approach to be valid. This assumption is not overly 
restrictive, since the particle densities in most coarsening systems are on the 
order of 10 8 to 1014 particles/cm 3. From the definition o f f  it is clear that 
N ( t ) - - f 0 ,  where N(t) is the number of particles per unit volume, and fn = 
f ~  Rnf(R,  t) dR. Thus, the flux of particles passing through a size class R to 
R + dR is f . / ~ ,  where/~ _= dR/dt. Therefore, the time rate of change o f f  is 
given by a continuity equation of the form 

Of/Dt + a ( f  . I~)/?R = J (5) 

where J is a production term in particle size space. In the LS treatment, J is 
set to zero, implying that processes such as nucleation and particle 
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coalescence, which introduce new particles of a given size class, are 
negligible. 

The flux of particles in size space is controlled by the function/~(R). 
This function embodies much of the physics of the ripening problem, and 
thus must be carefully constructed. In the LS theory,/~(R) was determined 
by examining the growth or dissolution of an isolated spherical domain into 
a supersaturated medium. At large supersaturations, such a Stefan problem 
is difficult to solve, and it is now well known that growing and dissolving 
spheres obey different kinetic laws. O) However, during Ostwald ripening the 
supersaturation of the matrix, O m ( t ) ~  1. Therefore, the quasistationary 
approximation may be employed, i.e., the diffusion field in the matrix is 
governed by 

V20 = 0 (6) 

along with the boundary conditions, 

O(R) = I/R (7) 

lim O(r) = 0 m (8) 
r --*oo 

Eq. (7) is the dimensionless form of the linearized Gibbs-Thomson equation, 
assuming the ideal solution, for the solute concentration in the matrix at the 
surface of a spherical liquid particle. As will be discussed below, if the 
particle or matrix is solid, Eq. (7) cannot be used. By requiring flux conser- 
vation at the matrix-particle interface and that the particle is pure solute, 
Eq. (6) with Eqs. (7) and (8) yields 

1~ = (0 m - -  1 / R ) / R  (9) 

A result of the quasistationary approximation is that this kinetic equation is 
valid for both growing and dissolving particles. Readily evident from Eq. (9) 
is its mean field nature. This is a result of employing Eq. (8) as a boundary 
condition, i.e., a particle grows or shrinks only in relation to a mean field 
concentration set at infinity. 

The final element of the LS theory is mass conservation. Mass or solute 
conservation must be explicitly added to the theory because Eq. (9) is based 
on a solution to Laplace's equation, which does not conserve solute. 
Assuming that there are no sources of solute external to the system, solute 
conservation demands that the total solute content of the alloy be divided 
between the particle and matrix, viz. 

0 o = Om(t ) + afa(t ) (10) 
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where 0 0 is the bulk alloy composition and a---4rc/(3 VmCo~ ). The previously 
unknown parameter 0 m can be determined from Eq. (10), and thus 0 m 
couples mass conservation into the kinetic equation. 

Equations (5), (9), and (10) may be rewritten as a nonlinear integrodif- 
ferential equation for the time kinetics and morphology of the ripening 
process. Rather than solve these equations for all times, LS found an 
asymptotic solution valid as t-4 oo. The procedure which they employed, 
and variants of which have appeared since, constitutes rather technical 
asymptotic analysis. Since a more detailed description of this procedure has 
been given elsewhere, (1~ only the highlights will be given below. 

The central idea is to reformulate the problem in terms of a double- 
scaled variable p ~ R/Iq where, depending on the approach, /~ is either the 
critical radius R c = 1/0 m, (the particle with/~ = 0) or the maximum particle 
size in the system. (11) Using the reformulated kinetic equation in conjunction 
with the solute conservation constraint, LS showed that as t ~  oo, the 
following must be true: K( t )=  3R~R c -4 const, R c ~ R, and f3 ~ Oo/a, where 

= ffffo. Since the rate constant K is a constant at long times, a solution of 
the continuity equation of the form g(p) h(t) is possible, which results in an 
ordinary differential equation for the particle size distribution function. 
Moreover, the constraint that f3 = Oo/a yields the unique value of K = 4/9. 
An interesting variant of this approach has recently been given (12'I3) which 
employs the scaling ansatz that as t ~  co, p = Rt -x, and f =  fo t-y, where x 
and y are fixed by the solute conservation constraint along with the 
continuity and kinetic equations. 

Through the above asymptotic analysis Lifshitz-Slyozov were able to 
make the following predictions concerning the behavior of two-phase 
mixtures undergoing Ostwald ripening in the long-time limit: 

(l)  The following temporal power laws are obeyed: 

R(t) - (R3(0) + 4t/9) '/3 

On(t ) = (R3(0) + 4t/9) -I/3 

N(t) = ~'(/~3(0) + 4t/9) -1 

where ~, = Oo/(a f3o/2 p3g(p) dp) and t = 0 is defined as the beginning of coar- 
sening in the long-time regime. 

(2) The asymptotic state of the system is independent of the initial 
conditions. Furthermore, the particle radius distribution is self-similar under 
the scaling of the average particle size. 

(3) This time-independent distribution function g(p) is calculable and 
is shown in Fig. 1. 
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Fig. I. Time-independent scaled particle radius distributions versus p=R/R, where 
f~ g(p)dp = i. The distributions due to BW, MR, GV, and TK are all for ~ = 0.I, and the 
LSW distribution is for ~ = 0. 

Perhaps the most intriguing prediction was the universal, self-similar nature 
of the coarsening process at long times. This universal behavior is a direct 
result of the influence of the solute conservation constraint on long-time 
solution of the continuity and kinetic equations. It is this universal self- 
similar nature which held out the promise of describing the Ostwald ripening 
process in a wide variety of two-phase mixtures. Furthermore, while some of 
the above temporal laws were deduced by earlier workers, C4) the LS theory 
gave the constants of proportionality necessary for careful comparisons 
between theory and experiment. 

Soon after the publication of the LSW papers, many experimentalists 
rushed to test the veracity of the theory. Experiments have confirmed the 
prediction of self-similar coarsening behavior at long times; however, 
virtually none of the reported distributions are of the form predicted by 
LSW. The reported distributions are generally broader and more symmetric 
than the LSW predictions. (~4'1~ While the temporal power law for _ff has 
been confirmed in a truely convincing fashion in only a limited number of 
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cases, (~4) no experiment has been capable of measuring the preexponential 
factor in any of the above equations owing to a lack of knowledge of the 
relevant materials parameters. Furthermore, there also appears to be a 
volume fraction dependence of the rate constant K, although the 
experimental results are not completely convincing. (14,16) 

3. MODERN COARSENING THEORY 

It was realized early that a major problem with the LSW approach was 
the mean field nature of the kinetic equation, Eq. (9). Such a mean field 
approximation assumes that a particle's coarsening rate is independent of its 
surroundings, i.e., a particle with nearest neighbors which are larger than 
itself will coarsen at exactly the same rate as if it were surrounded by 
particles that were of a smaller radius. LS assumed that their deterministic 
rate equation would be valid at an unspecified low volume fraction of coar- 
sening phase, 4. This flaw in the LS approach was almost immediately 
recognized, and advanced as the cause for the apparent disagreement 
between the theoretically predicted and experimentally measured particle size 
distributions. (17) More recently, a direct experimental measurement of 
individual particle coarsening rates was undertaken. (18) This work clearly 
showed that at volume fractions as low as 3 % individual particle coarsening 
rates were in fact not a smooth function of particle radius as predicted by 
Eq. (9), but varied according to a particle's local environment. The 
surprising strength of these diffusional interactions between particles stems 
from the long range Coulombic nature of the diffusion field surrounding a 
particle. As a result, particle interactions occur at distances of many particle 
diameters and restrict the validity of the LS theory to the unrealistic limit of 
zero volume fraction of coarsening phase. 

In order to remove the zero volume fraction assumption of the LSW 
theory, one needs to determine the statistically averaged diffusional 
interaction of a particle of a given size class with its surroundings. Many of 
the attempts to determine the statistically averaged growth rate of a particle 
either do not not account for the long-range nature of the diffusion field 
surrounding the particle, (4'17'19) and/or employed and hoc assumptions in an 
attempt to account for the diffusional interactions between particles. (5'2~ 
Recently, Brailsford and Wynblatt (BW), (21) Voorhees and Glicksman 
(VG), (8'~2~ Glicksman and Voorhees (GV), (23) Marqusee and Ross (MR), (24) 
and Tokuyama and Kawasaki (TK), (2~) have proposed more realistic models 
of the coarsening process at finite-volume fractions of coarsening phase. 

Interestingly, each of these groups used identical microscopic equations 
with which the statistical averaging is performed, yet arrive at quantitatively 

822/38/1-2-16 
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different results. While the methodology used to arrive at the microscopic 
equations vary, the following illuminates the basic assumptions of the 
microscopic formulation. The coarsening phase is again assumed to be 
spherical and fixed in space. The emission or absorption of solute from 
growing or dissolving particles is modeled by placing point sources or sinks 
of solute at the center of each particle. Therefore, the diffusion field within 
the matrix obeys, 

N 
V20 = +4n ~ Bi6(r  - ri) (11) 

i=1 

where the source/sink strengths B i are unknowns and c~(r - ri) is the Dirac fi 
function. The solution of Eq. (11) is 

N 

O= Om- E B e / I r - -  rel ( 1 2 )  
i = l  

where r locates a field point and r i locates a particle center. The unknown 
constants Bi and 0 m are determined, as in the LS treatment, by requiring 
interfacial equilibrium and solute conservation. Specifically, in order to avoid 
applying the Gibbs-Thomson equation pointwise along the particle-matrix 
interface, it is assumed that the particles will remain spherical and Eq. (7) is 
applied to the surface averaged concentration of a particle. This interfacial 
boundary condition along with the solute conservation constraint yields the 
following set of boundary conditions: 

N 

Bj = OmR j -- 1 + Rj  Y '  B i /R  U (13) 
i=1 
i4-j 

N 
Om=O0 - a  E R~ ( 1 4 )  

i - 1  

where Ris==-Irj-ri[. Using Gauss' law and Eq. (11) one can show that 
B~=R~g~. Using this result, and the previous observation that as t ~  ~ ,  
0 m ~ 0 yields a reformulated version of Eq. (14), 

N 
3 B, = o (15/ 
i = l  

Eqs. (13) and (15) constitute a set of N +  1 equations for the N +  1 
unknowns of Eq. (12). The boundary condition, Eq. (15), while being a 
natural outgrowth of the mass conservation constraint, is essential for 
guaranteeing the convergence of the summation appearing in Eqs. (12) and 
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(13) as N ~  o0. Similar equations have been studied in the theory of 
diffusional limited reactions, (26) and void growth in irradiated materials. (27) 
Wiens and Cahn (2s) appear to be the first to use such equations to describe 
coarsening. 

The objective of each of the averaging procedures employed by BW, 
VG, TK, and MR is to determine the statistically averaged growth rate/~ or 
a statistically averaged source/sink strength B ( R ) =  R21~ of a given particle 
at a specified ~ using Eqs. (13) and (14). Once this is known the continuity 
equation along with the solute conservation constraint are employed to 
determine the kinetics and morphology of the coarsening mixture. An 
overview of each of these statistical averaging procedures is given below. 

Tokuyama and Kawasaki (25) statistically average Eq. (13) through a 
scaling expansion technique originally developed by Mori and 
coworkers.(29-31) The scaling approach performs spatial and temporal coarse 
graining over length and temporal scales characteristic to the ripening 
problem. An advantage of their approach is that in the thermodynamic limit, 
i.e., N ~  ~ and V-* oo, N / V - ~  const, it is possible to explicitly evaluate the 
magnitude of the fluctuations o f f (R ,  t). TK define three characteristic length 
and time scales for a first-order phase transformation process: one charac- 
teristic of a nucleation stage, a second pertaining to an intermediate growth 
stage where ~ = O(t), and a third characteristic of a late or ripening stage 
where r is constant. A discussion of the intermediate stage will be given 
later. They find for (3r l/z ~ 1, in the late stage regime, 

B(p)  = p - 1 - p ( M  2 -- p)(3r _ C(3~)1/2 (16) 

where p = R / R ,  M ,  - f ~  p" f (R,  t ) d R / f ~  f ( R ,  t) dR and C is a complex 
function of p and Mn .(32) Their expression for B(p)  becomes time 
independent as t--, m since f ( R ,  t ) ~ g ( p ) h ( t ) .  As a result, scale-invariant 
distributions exist in the long-time limit. The first two terms in Eq. (16) are 
simply the LSW kinetic equation in the limit t--* oo and thus as ~ --, 0 their 
theory also reproduces the LSW results. The third term is a drift term in 
particle size space which is independent of the diffusional interactions 
between particles. The fourth term is a soft collision term resulting from the 
diffusion interactions between particles on distances of order (3~)~/2//~. They 
also show that the fluctuations in f ( R ,  t) which result from diffusional 
interactions are consistent with the solute conservation constraint and that 
they are small, but observable, if the dimensionality of the system is greater 
than zero. In the initial TK paper, they use Eq. 16 along with the continuity 
equation and conclude that the scaled time-independent distributions are a 
function of ~ and that the rate constant K is independent of ~. However, in a 
later paper Tokuyama, Enomoto, and Kawasaki (32) reexamine these 
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equations and find that both K and g(p) are functions of 4. The time- 
independent scaled distribution function found by setting C = 0 is shown in 
Fig. 1. 

Marqusee and ROSS (24) determine the statistically averaged kinetic 
equation via a multiple scattering approach. ~33-35) The basic idea is to write 
the microscopic equations, Eqs. (13) and (12), in the form of a multiple 
scattering series and average the resulting equations, assuming particle 
positions are independent. By summing the most divergent terms in the 
scattering series they arrive at an expression for the statistically averaged 
kinetic equation. They conclude that in the long-time limit, 

B(p) = (aoal P - 1)(1 + aop(34Noao) l/z) (17) 

where p = R / R ,  a 1 and No, are the amplitudes of the temporal power laws 
for Om(t ) and N(t), respectively, in the long-time limit and a o = K 1/3. The rate 
constants N O and a 1 are determined by employing the time-independent 
continuity equation valid in the long-time limit and mass conservation. As 
with TK, and 4--' 0, a 0 : 1/al and the LSW distribution and time kinetics 
are recaptured. Also, B(p) is time independent at all volume fractions. 
Furthermore, for 4 ~< 0.01 a perturbation treatment predicts that K(4 ) -  
K(0) ~ 41/2. Numerical evaluation of a o, o"1, and N O yields the particle size 
distribution shown in Fig. 1 along with K(4 ) shown in Fig. 2. The MR 
kinetic equation, at 4 = 0.1, is also shown in Fig. 3. 
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Fig. 3. The sink strength B(p)=R21~ versus p at 4=0.1 .  The data points shown are the 
discrete simulation results of VG which were computed by averaging the B i data shown in 
Fig. 4. The smooth GV curve was determined using their effective medium approach. For 
comparison, the LS kinetic equation is B(p)=p--1.  The nonlinearity of the B(p) data 
indicates that diffusional interactions between particles results in an increase in the absolute 
value of the statistically averaged coarsening rate of a particle. 

Brailsford and Wynblatt ~21) employ chemical rate theory to determine 
the statistically averaged growth rate of a particle. Despite the seemingly ad 
hoc nature of the chemical rate theory, this model cannot be discounted 
outright. For example, Brailsford has shown t27) that in the limit of a 
monodispersion, i.e., diffusion to a random array of absorbing sinks, a 
statistical average of equations similar to Eq. (13) agree with the predictions 
of the BW effective medium approach. Also the specific predictions of the 
variation of a particle sink strength with ~ derived using the BW effective 
medium, approach in the monodisperse limit are quite similar to those 
reported for diffusion-controlled reactions. ~36) There are also marked 
similarities between the MR and BW approaches. The basic idea of the 
homogeneous rate theory is that a statistically average sense, the emission of 
solute from all the particles in the dispersion can be represented by a 
homogeneous production rate in the same medium. The emission rate and 
sink strength of a particle can be determined self-consistently by placing a 
representative particle of a given size class inside a sphere of radius a where 
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a > R, and allowing solute production in the surrounding medium. However, 
BW do not employ a fully self-consistent approach and instead use a simple 
interpolation formula for mathematical simplicity, which yields the following 
rate equation in the long-time limit, 

B(p) = (~o -- 1)(1 + ~qp) (18) 

where p = R/_R, ~ = .~/R, C and q is a function of 0 and various moments of 
g(p). Again, B(p) is time independent, since/~ and R C have the same time 
kinetics as t ~ ~ .  Also, the BW theory reduces to the LSW limit since as 
r 0, q-~0. Performing a similar asymptotic analysis as Lifshitz and 
Slyozov, Eq. (18) yields the results shown in Figs. 1 and 2. 

Voorhees and Glicksman (s'z2) employ Eqs. (13) and (15) along with 
computer simulation techniques to perform the statistical averaging. Large 
numbers of particles, ~102, are placed at random locations in a basis, and 
then the basis is translated via cubic lattice translation vectors to fill all 
space. The periodic nature of the particle arrangement allows Eq. (13) to be 
reformulated into two rapidly and absolutely convergent summations using 
lattice summation techniques originally developed by Ewald. (37) At finite r 
the coarsening particles interact diffusionally, which results in fluctuations in 
individual particle coarsening rates as shown in Fig. 4. Note that the fluc- 
tuations are smaller for the small particles in the dispersion indicating that, 
as expected from Eq. (13) in the limit R i ~  0, small particles interact weakly 
with their immediate neighbors. Averaging these fluctuations over a given 
size class yields the discrete B i values shown in Fig. 3. Using the physical 
insight obtained from the simulations, GV (23) constructed a simple effective 
medium which reproduces the B(p) and rate constant data derived from the 
simulations over 0.05 ~< 0 ~< 0.5. The GV effective medium approach involves 
placing a representative particle inside an averaging sphere of radius a, 
where a =  1/~ 1/3 for P<~Pc and a=R/ fk  1/3 for P>/Pc, where p = R / l ~  and 
Pc = Rc/R. Assuming interfacial equilibrium, and that the concentration at 
the surface of the averaging sphere is a functional of g(p), yields the 
following kinetic equation: 

B(p) = (a'p - 1)(1 + a'fkl/3p) S(p C - p )  

+ (a'p -- 1)(1 + ~1/3) SO --PC) (19) 

where a '  is a functional of the moments of g(p) and S(x) is a step function 
defined as 0 for x < 0 and 1 for x > 0. Clearly as gi --} 0 the LSW result is 
recaptured and B(p) is time independent, since a '  is only a function of gl. The 
GV kinetic equation at # = 0.1 is shown in Fig. 3. Asymptotic analysis of the 
scaled continuity equation and mass conservation constraint yields the 
results shown in Figs. 1 and 2. 
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Fig. 4. Discrete B(p) data at ~ = 0.1 derived f rom the simulations of  VG. The scatter in the 
value of  B i for a given particle size is a result of  diffusional interactions or "soft  collisions" 
between particles which occur at finite 0. 

All of the theories are in general agreement on the following points: 
(1) the temporal power laws originally reported by LS are not a function of 
~; however, the amplitude of the power laws is 0 dependent; (2) scaled time 
invariant distribution functions exist at finite 0 in the long-time limit; (3) as r 
increases, the time invariant distributions become broader and more 
symmetric than the LSW distribution; (4)the rate constant rises rapidly at 
low 0 and is followed by a slower increase with ~; (5)the predictions for 
K(r of GV and MR are almost identical up to r ~ 0.1, as shown in Fig, 2; 
and (6) the B(p) functions of MR and GV are quite similar and in agreement 
with the VG simulation data, all three descriptions showing increased 
diffusional interactions with increasing ~b which result in an increase in the 
absolute value of the statistically averaged coarsening rate of a particle in a 
given size class. Note that the mathematical similarity between the B(p) 
functions predicted by BW and MR is deceiving, since the values of the 
numerically determined parameters in each theory will be different. 
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However, disagreements exist between each of these theories: 

(1) The disagreement between the K(~i) predictions of BW and those 
of both GV and MR most likely stems from BW's use of an ad hoc linear 
interpolation formula. It would be interesting to see what would be the 
predictions of a fully self-consistent chemical rate theory. 

(2) The theory of GV disagrees with MR for r < 10 -3 since MR 
predict that K((~)-K(O),,..r 1/2, and the GV effective medium approach 
predicts that K(~) - -K(O)~  1/3. However, since simulations were not 
performed at these low volume fractions, and the GV effective medium 
approach is valid only insofar as it reproduces the simulation results, such a 
disagreement is not serious. Despite this, it would be interesting if 
simulations could be performed at very low r in order to settle the apparent 
disagreement. 

(3) TK claim that the small difference between the rate constants 
predicted by TK and M R  (32) results from the MR B(p) function violating the 
conservation of mass constraint. However, it is not clear why this should be 
so, since the unknown parameters in the MR B(p) function are specifically 
chosen to conserve mass. 

(4) The disagreement between the K(O) prediction of GV, and MR at 
>/0.12 results from a breakdown in the assumptions employed by MR; i.e., 

MR assume that there are no spatial correlations between particles. The 
simulations performed by VG indicate that spatial correlations begin to 
occur at r ~ 0.1. Therefore, extension of the MR theory above qt ~ 0.1 is 
probably unwarranted. 

(5) TK insist that to order (3r 1/2 soft collision terms must be present 
in the B(p) function. As seen in Fig. 4, VG's simulations also suggest that 
these collision processes must be present and play an important role in the 
coarsening process. Such collision processes were ignored in the MR 
treatment. 

(6) The similarity between the MR and GV B(p) predictions is a little 
misleading, as evidenced by the dissimilarity in the predictions of the time- 
invariant distribution functions. This dissimilarity is a result of the different 
functionality of B(p) at r = 0.1. 

Although the aforementioned theories are by far the most realistic 
theories of Ostwald ripening yet developed, they are only in qualitative 
agreement on the role of finite volume fractions on the coarsening behavior 
of two-phase systems. Unfortunately, a crucial experiment has not been 
performed at low ~i in order to compare to the theories. Work at higher r is 
in qualitative agreement with the aforementioned theoretical predictions, i.e., 
time-independent distribution functions which are broader and more 
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symmetric than the LS form (14) and a rate constant which is relatively insen- 
sitive to changes in ~ above approximately 0.1. (38) Surprisingly, to the best 
of my knowledge a coarsening experiment has never been done using a 
system for which all the relevant materials parameters were known a p r i o r i .  

Such an approach would permit a direct measurement of K(r Clearly more 
experimental and theoretical work is necessary in order to settle the subtle 
disagreements now existing between the various Ostwald ripening theories. 

4. TRANSIENT OSTWALD RIPENING 

There has been very little study of the behavior of coarsening systems in 
the transient or short-time regime. This is particularly unfortunate because 
LS's prediction that the asymptotic long-time solution is unique and 
independent of the initial conditions, i.e., that the nonlinear integrodifferential 
equation has a unique attractor state at long times, is one of the most 
intriguing aspects of the theory. It is also of fundamental importance in 
applying coarsening theory to experiments, for it is very possible that in 
many systems it is impossible to reach the long-time limit in any experi- 
mentally accessible times. 

Solving the fully time-dependent coarsening problem is a formidable 
task. However, some insight into the nature of transient coarsening can be 
obtained by examining the time dependence of various moments o f f (R ,  t). 
Assuming, for simplicity, the LSW kinetic equation, Eq. (9), and 
transforming the integral of Eq. (5) (with J---0) by integrating by parts 
yields an expression for the time rate of change of the nth moment o f f  as 

j~,= lira ( f  . t~ ) R " + Om n f  . 2 - -  n f  ,, _ 3 (20) 

assuming f ~  0 as R ~ oo. Differentiating the solute conservation constraint 
with respect to time, using the continuity equation, and integrating by parts 
yields the time rate of change of the matrix concentration as 

or. = --3a[OmL --fo] (21) 

To determine the time rate of change of the fn and 0 m, it is necessary to 
choose an initial distribution. We shall assume a relatively simple particle 
size distribution of the form 

f ( R ,  O) = A R  3 exp(-flR) (22) 

where the constants A and fl are chosen to satisfy the solute conservation 
constraint and specify an initial average particle size (note that in this case 
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t = 0 is not the beginning of self-similar coarsening). If the matrix concen- 
tration 0~ is represented by ~(t)/l~, Eqs. (20), (21), and (22) yield 

0m(0 ) = - 3 a f o [ ~ -  1] 

R(0) = A [~/2 - 1 l/(fo B 2) 
(23) 

N(o) = / o  = o 

/~(0) = 4~rA [3r - 4]/~ 3 

where F ~ the total interfacial area = 4rifE. The time-dependent parameter 
is a measure of the degree of matrix supersaturation relative to the average 
particle size and, in general, ~(t)/> 1, and ~ ~ 1 as t ~ oo. As a result, 0 m ~< 0 
and since 0 =-Ore,  d > 0 for all assumed initial supersaturations. This 
implies that the matrix concentration will always initially decrease with time 
and ~i will always initially increase. However, if ~>  2, /~, and /~> 0, 
indicating that on average the particles are growing into a super-saturated 
medium. However, /~ must be less than zero since an Ostwald ripening 
process is a surface-energy-driven morphological change_As a result, ~ < 4/3 
in the coarsening regime. Interestingly, if 1 ~< ~ ~< 4/.3, R ~< 0, and thus/~ is 
constrained to decrease initially and, furthermore/~ and/~c are of opposite 
signs. Contrast these results with a self-similar coarsening process where 
R > 0 a n d / ~ =  Re. Clearly, the entire time evolution of such a distribution 
requires a more complete solution of the integrodifferential equation. 
Nevertheless, the above analysis illustrates the richness of the equations and 
the unexpected results which are possible. 

By far the most complete study of ripening in the fully time-dependent 
regime was undertaken by Venzl. (39) Venzl solved the time-dependent 
nonlinear integrodifferential equation in the limit of ~i = 0. Using a relatively 
restricted set of initial conditions, Venzl showed that the LSW distribution 
was indeed a unique attractor state for the nonlinear dynamical system. The 
presence of this attractor state appears to be a direct result of the solute 
conservation requirement, as asserted by LS. His results also show that the 
path by which these particle radius distributions took to the asymptotic state 
is not fully constrained at all times, but depends on the initial conditions. 
The path dependence of a distribution's approach to the scale-invariant 
regime has important ramifications if the materials parameters of the system 
of interest dictates a slow coarsening rate, for then the morphology of the 
two-phase dispersion cannot be predicted for any experimentally accessible 
times without knowledge of the initial state. Such systems have been studied 
by Vedula and Heckel (4~ and Watanabe and Masuda. ~4]) Venzl also showed 
that distributions which are narrower than the time-invariant form tended to, 
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at first, become broader than this distribution. Furthermore, it is clear from 
his results that it is possible to have /~3~ K when the scaled particle size 
distribution function is not time invariant. Therefore, it would be difficult to 
determine experimentally if self-similar coarsening has occurred by only 
measuring R(t). 

Other less complete theoretical studies of transient coarsening tend to 
corroborate Venzl's conclusions. MR, ~13) using a scaling ansatz originally 
suggested by Binder, ~ also show that the approach to the asymptotic state 
is not fully constrained. TK (25) show that there is an intermediate stage 
during a first-order phase transformation process where ~ = O(t). In this 
regime the particle radius distribution is not time independent but does obey 
a scaling relationship, and more importantly _R is proportional to t l/3. Recent 
experiments have also reported R is proportional to t 1/3 when ~ = O(t), ~42) 
although the results are not completely convincing due to experimental error. 
VG performed computer simulations in the transient regime and also report 
in agreement with the above: (1)a  nonconstrained approach of the particle 
radius distribution to the asymptotic state, (2)that  distributions which are 
much broader than the scaled time-independent distribution evolve slowly 
toward this distribution, (3)particle size distributions which are initially 
narrower than the scaled time-independent distribution tend to at first 
become broader than the time-independent shape, and (4) it is possible for /~  
to decrease initially when A } = 0. 

In summary, the LSW distribution does appear to be a unique attractor 
state for the nonlinear integrodifferential equation describing the time 
evolution of a particle radius distribution. Consistent with LS, the solute 
conservation constraint plays a central role in the presence of this attractor 
state. It is also possible that many of the reports of particle size distributions 
which have longer tails for R > /~  than those predicted theoretically are a 
result of the extremely long time required for a very broad scaled particle 
radius distribution to become the time invariant. 

5. THE EFFECTS OF ELASTIC FIELDS DURING OSTWALD RIPENING 

It has long been recognized that elastic fields can be important in first- 
order phase transformations in solid-solid systems. ~43'12) In fact, the 
classic Gibbs-Thomson equation is not valid in solid-solid systems due to: 
the presence of a crystalline lattice, the ability of solids to withstand 
nondilatational stresses, and the possibility of interracial stresses which are 
different than the interfacial energy. As a result, one must question the 
validity of applying the LS theory, or any of the more recent finite 
coarsening theories, to solid-solid systems. Experimental examples of the 
importance of elastic fields during coarsening abound; for example, 
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precipitates have been shown to line up in raftlike structures and change 
shape during ripening. (44) Very recent progress illuminating the role of 
elasticity during Ostwald ripening has been made. In fact, it now appears 
possible that the coupled stochastic elastic and diffusion problem can be 
treated self-consistently to yield a realistic theory of Ostwald ripening in 
solids. 

Solid precipitates in a solid matrix differ from liquid precipitates in a 
liquid matrix in many ways all of which have a great impact on the ripening 
behavior of the two-phase mixture. In particular, the lattice parameters of the 
precipitate and the matrix are usually different and in certain cases the lattice 
planes of the precipitate and the matrix are continuous across the matrix- 
-particle interface. A result of such a coherent interface is that long-range 
elastic fields are generated in both the precipitate and matrix phases. In 
addition, the differences in atomic radii of the solute and solvent atoms also 
introduce elastic stress fields. The importance of these elastic fields is that 
they couple to the composition field and thus influence the coarsening 
behavior of precipitates. An example of the effects of both precipitate and 
compositionally generated stress fields is shown in Fig. 5. The equilibrium 
composition fields shown are a result of both the elastic interactions between 
the two coherent precipitates with different elastic constants than the matrix, 
and the nonuniform composition field. ~45) Since the system is at equilibrium 
this nonuniform composition field does not engender mass flow. This also 
demonstrates that the effective materials parameter approach of LS, (6) which 
cannot account for such an effect, is invalid. Clearly, one cannot blindly 
apply theories developed for fluid-fluid mixtures to solid two-phase mixtures. 

Much of the theoretical work to date on the role of elasticity during 
Ostwald ripening has dealt only with the energetics of  the coarsening 
process. (44'46'47) The most realistic of these models is one due to Johnson ~48) 
which is based on a rigorous solution to the elastic problem of two 
elastically interacting coherent misfitting precipitates with different elastic 
constants than the matrix. Johnson showed that for certain combinations of 
materials parameters, particle sizes, and particle separations a small 
precipitate will grow at the expense of a larger precipitate and result in a 
stable monodispersion. This result can be qualitatively understood as 
follows. If the precipitates are softer than the matrix, as Eshelby ~44) 
originally proved, the elastic interaction energy is negative. Since the total 
elastic interaction energy is proportional to V 1 + V 2, where V 1 is the volume 
of precipitate one and V z is the volume of precipitate two and the total 

V 2/3 the negative elastic interaction surface energy is proportional to V~/3 + 2 , 

energy can stabilize the precipitates against coarsening (with the constraint 
that V1 + V2-~const). Such a result is clearly contrary to standard 
capillarity controlled ripening theory, and reflects the important role stress 
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can play during the coarsening process in solid-solid systems. Unfortunately, 
the above approach, being based upon energetics, cannot provide any insight 
into the kinetics of the ripening process in systems where stress is important. 

Clearly, elastic fields can radically change the entire late stage phase 
transformation process. A more realistic treatment of coarsening in 
solid-solid systems involves the solution of a challenging coupled stochastic 

i 

1 I i l l  ' , ,  I I , , ' , . , . .  ,;,',, / �9 

Fig. 5. Dimensionless isoconcentrates surrounding two elastically interacting coherent 
misfitting precipitates. In systems where the misfit is positive, the precipitates are harder than 
the matrix, and the atomic volume of the solute is greater than that of the solvent, solute 
enhancement, relative to the bulk composition, is denoted by the solid lines and solute 
depletion is denoted by the dashed lines. The magnitude of the change in solute concentration 
near the precipitates can be ~100% in certain systems. The contours are at equal normalized 
concentration intervals of 5.8 • 10 4.t4~ 
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elasticity and diffusion problem. Both must be solved simultaneously since 
both the elastic and diffusion fields are functions of particle size and 
separation, and are coupled through thermodynamics. (49'5~ 

6. C O N C L U S I O N S  

Although the original LS paper represented a considerable advance in 
the theory of Ostwald ripening, it was not capable of describing coarsening 
in realistic two-phase mixtures. Much of the recent work reviewed herein has 
brought us closer to that goal, but there remain many important unanswered 
questions: 

(1) Extensions of the theories to yet higher r may prove difficult. 
Although this has been done using computer simulations, which enable one 
to avoid the spatial correlation problems algorithmically, it is not clear 
whether the diffusion solution upon which all these theories are based is 
valid at higher volume fractions. For example, preliminary work (18~ on a 
simple two-particle model similar to that employed by Samson and 
Deutch (51) and Goldstein, (52) with boundary conditions appropriate to the 
Ostwald ripening problem, shows that as the two particles of different radius 
approach each other, diffusional interactions introduce nonzero components 
in the spherical harmonics of the particle shapes, thus violating the 
assumption of particle sphericity and fixed spatial locations of the particles. 
Furthermore, as the particles approach each other the two-particle model 
predicts that the coarsening rate of both particles d!verges, whereas the point 
source approximation, Eq. (11), does not. It is possible that these difficulties 
disappear following the statistical averaging performed in the simulations, (53) 
but this has not been proved. Nevertheless, the simulations constitute the 
most accurate predictions of the behavior of ripening systems at high volume 
fractions, and it would be most interesting if the theories of MR or TK could 
be extended for purposes of comparison. A related question is: What is the 
effect of nonspherical particles on the coarsening behavior of two-phase 
systems? 

(2) The role of spatial correlations between particles has been largely 
ignored. At r 4: 0, diffusional interactions between particles are present and 
thus the spatial distribution of particles becomes important. All the theories 
reviewed assume a random spatial distribution of particles. Are such random 
spatial distributions found in nature? Will a highly nonrandom spatial 
distribution of particles eventually coarsen to a random distribution? Will a 
nucleation and growth process result in such a random spatial distribution? 
(This is certainly not the case if inhomogeneous nucleation is present.) What 
are the conditions under which a random spatial distribution will coarsen to 
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a highly correlated spatial distribution? Is the appearance of time- 
independent scaled particle radius distributions inherently linked to the 
assumption of a random distribution of particles? Does a nonrandom spatial 
distribution of particles strongly influence a system's approach to the long 
time attractor state? 

(3) In any two-phase mixture one phase of which is a solid, the 
surface energy will be anisotropic to some degree. At finite 4, what effect 
does surface energy anisotropy have on both individual particle coarsening 
rates, and the stochastic aspect of the ripening problem? Does the surface 
energy anisotropy by itself introduce a spatial directionality into the ripening 
problem? 

(4) What particle size distribution results from a nucleation and 
growth process? How does this distribution influence the coarsening system's 
approach to the asymptotic state? 

(5) What role does elasticity play in the coarsening process? Unfor- 
tunately, there is no theory which treats the linked stochastic elasticity and 
diffusion problem which enables prediction of both the kinetics and particle 
size distributions during ripening. What causes precipitate alignment in 
solid-solid systems? What are the conditions under which stable 
monodisperse ensembles of precipitates exist? 

(6) Second phase domains with both positive and negative curvatures 
are quite common in nature, e.g., solid dendrites which grow from a super- 
cooled melt. How do these structures coarsen under conditions of diffusional 
mass transfer? Do scale-invariant distributions of curvature exist in such 
topologically complex structures? Can the evolution of curvature which is 
initially both positive and negative be described by temporal power laws? 
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